At Advanced Power Inc. solar powered water pumps are the heart of our business. You need to pump water and we can help with a quality made pump and easy to install and use solar pump system.

We have manufactured and distributed solar powered water pumps, and solar well pump systems and equipment since 1988. One of the most experienced and oldest companies in the business.

We save you time, money and hassle and we love doing it! Not only do we try to build the best solar pumps, we strive to be the best company for you to buy a solar water pumping system from. We take care of you with quality service after the sale.

Please give us a call and put our nearly 30 years of experience to work for you today!
Now also offering pumps to lift water up to 300 feet and flow up to 13 gallons per minute.


solar water pumping system solar powered well pump
Call Us Toll Free 866-519-7892
for an instant no pressure quote.
View our solar water pump, water well Installation video! Yes, you can do it yourself. It's easy! Also please click here to visit our video page to view the new ground rod install video! Very important!
Click on the play tab in the center of the video screen to view product Installation video!
We are proud that we at Advanced Power Inc. manufacture our pumps in America, providing jobs for Americans! Our people have been at it for nearly 30 years! Most of our competition can NOT say the same. Many of the competitor's pumps come from China, but are advertised as "assembled" in the USA. 
For nearly 30 years people around the globe have depended on our solar powered water pumping systems to pump water for:
livestock
wildlife
homes and cabins
and small irrigation

Try our state of the art Aluminum housing, Brushless motor solar pumps with even greater pump life than before! We stand behind our products with the highest level of customer service.
We invite you to join the thousands of satisfied customers we are serving today.
Solar Powered Submersible Water Well Pumping System pictured above in a remote mountain pasture.
Nearly 30 years of manufacturing quality solar powered water pumps and solar powered pumping systems.
Advanced Power brand pumps are proudly made in the USA.
Solarpumps.com is a division of apiok.com.
Solar Pumps Starting at $810.00   No additional controller needed, wire direct to appropriate solar.
Solar Pump Systems Starting at $1700.00 On The Small Panel Systems Page. Pictured is a multi-panel system K255 found on our Large & Multi-Panel Systems Page. For even larger systems view our Deep Well High Flow systems page.

Solar pump and Solar pumps information

solar powered water well pumps are the affordable and reliable way to pump water

A reliable clean water supply is a necessity but an extremely large number of people in many remote areas currently lack this basic provision. Solar water pumps are a socially and environmentally attractive technology to supply water. Especially if water is needed in remote areas which are beyond other power sources such as the power grid. Solar power is often the best econimical option to pump water. Many people even though well withing the reach of conventional power lines are choosing to use solar powered pumping systems as an alternative to paying monthly electric bills for their water.

Solar water pumps supply water to areas which are beyond the reach of power lines. Commonly, such places in many foreign countries rely on human or animal power, or on costly fuel and diesel engines for their water supply. Solar water pumps are replacing the current pump systems and resulting in both socio-economic benefits as well as climate related benefits. The water supplied by the solar water pump can be used to provide drinking water, irrigate crops or water livestock.  Solar water pumping is a definite win win for the enviornment and all those involved.

Using one or more PhotoVoltaic (PV) panels to power a specially designed ultra effecient motor in a submersible pump is how the bulk of solar pumping systems are operated.The water is often pumped from the ground or stream into a storage tank that provides a gravity feed, so energy storage is not needed for these systems or just pumped directly into a holding tank for livestock watering. If water on deman is needed 24/7 then the use of batteries with your solar pump systems will be necessary.

Feasibility of technology and operational necessities top:
There are two main types of solar water pump technologies: a) the centrifugal pump, which uses high speed rotation to suck water in through the middle of the pump. Most conventional Alternating Current (AC) pumps use such a centrifugal impeller. However, when operating at low power the performance of the pump drops dramatically. This makes centrifugal pumps less suitable for solar applications, since low power due to cloudy weather is to be expected; and b) the positive displacement pump, which usually uses a piston to transfer water (Short & Thompson, 2003). Many solar water pumpts use the positive displacement pump, which brings water into a chamber and then forces it out using a piston or helical screw. These types generally pump slower than other types of pumps, but have good performance under low power conditions and can achieve high lift. Since PV is expensive and is an intermittent power supplier, solar pumps need to be as efficient as possible. Efficiency of the pump is measured in the amount of water pumped per watt of electricity used.

Two types of pump exist: submersible pumps and surface pumps. It depends on the water source which pump type is more suitable. In the case of a well, the pump needs to be placed underwater. Surface pumps can be placed at the side of a lake or, in the case of a floating pump, on top of the water. Surface pumps are less expensive than submersible pumps, but they are not well suited for suction and can only draw water from about  6.5 vertical meters. Surface pumps are excellent for pushing water over long distances.

Other options for remote watering exist. In Table 1 the option of solar water pumping is compared to several other remote watering options.

Table 1. Comparison of Solar and other Remote Watering Options
Pumping TechnologyAdvatantagesDisadvantages
Solar- Low maintenance
- No fuel costs or spills
- Easy to install
- Simple and reliable
- Unattended operation
- System can be made to be mobile- Potentially high initial costs
- Lower output in cloudy weather
- Must have good sun exposure between 9 AM and 3 PM
Diesel or gas- Moderate capital costs
- Can be portable
- Extensive experience available
- Easy to install- Needs maintenance and replacement
- Maintenance often inadequate, reducing lifetime of system
- Fuel often expensive and supply intermittent
- Noise, dirt and fume problems
- Site visits necessary
Windmill- Potentially long lasting
- Works well in windy site- High maintenance and costly repair
- Difficult to find parts
- Seasonal disadvantages
- Need special tools for installation
- Labor intensive
- No wind, no power
Gravity
- Very low cost
- Low maintenance
- No fuel costs or spills
- Easy to install
- Simple and reliable

- Only feasible in a small number places
Ram- Very low cost
- Low maintenance
- No fuel costs or spills
- Easy to install
- Simple and reliable- Requires moving water as a operational necessity
Hauling- Lowest initial costs
- Excellent mobility- Very labor intensive
Status of the technology and its future market potential top:
PV water pumping has become a widely adopted solar energy technology in the last two decades (Firatoglu & Yesilata, 2004). Ten thousand PV water pump systems were installed worldwide up to the year 1993 (Barlow et al., 1993). This grew over sixty thousand systems by 1998 (Short and Orlach, 2003)

Rapid expansion over the last two decades of the global solar PV market has occured, with an average annual growth rate of 40 % (IEA, 2010) and 60% between 2004 and 2009 (REN21, 2010). A record 7GW of new grid-connected capacity was added in 2009, bringing total grid-connected capacity to 21GW with off-grid PV accounting for an additional 3 to 4GW. Crystalline silicon and thin film solar systems are in the early phases of rapid market deployment, and third generation and concentrated solar PV are currently in the R&D and demonstration phase.

While solar water pumps are much more small scale applications compared to PV technologies such as concentrated solar PV, the rapid expansion of PV technologies in general will benefit the deployment rate of solar water pumps. Since the main barrier to wide scale deployment of solar water pumps is the high initial capital costs due to the PV array, and the rapid expansion of PV technologies is leading to reduced prices for PV systems, it is expected that the solar water pump technology will reach higher penetration levels.

The IEA (2010) forecasts an average annual market growth rate of 17% in the next decade, leading to a global cumulative installed PV power capacity of 200 GW by 2020 and 3000GW by 2040 (with repowering of older systems).  This would represent roughly 11 percent of global energy demand should this scenario play out. In terms of technology, the market share of thin films is expected to grow to 35% by 2013, due to constraints in the availability of high grade silicon.

Contribution of the technology to social development top:
Solar water pumps contribute to social development in several ways. Since other remote water supply systems are less reliable than solar water pumps. The use of solar water pumps therefore provides a reliable, safe and adequate water supply which improves the community's health. Other benefits to social development are the improvement of social cohesion within the community, reduced migration out of the community, and increased community interaction in social events due to increased time availability (Short & Thompson, 2003).

In addition, in many developing countries there is a strong link between gender and water. In many developing countries, women are responsible for the water supply, spending a large portion of their time to gather the water. The use of solar water pumps can have considerable positive effects for women in these communities (Short & Thompson, 2003). The scope of these benefits is very broad. For instance, the adequate water supply improves the personal hygiene of women but also allows them to allocate more of their time to the other activities (Short & Thompson, 2003). After installation of solar water pumps women in these communities might allocate more time to activities such as education or foodgathering (WaterAid, 2001).

Contribution of the technology to protection of the environment top:
Solar PV systems, once manufactured, are closed systems; during operation and electricity production they require no inputs such as fuels, nor generate any outputs such as solids, liquids, or gases (apart from electricity). They are silent and vibration free and can broadly be considered, particularly when installed on brownfield sites, as environmentally benign during operation. The main environmental impacts of solar cells are related to their production and decommissioning. In regards to pollutants released during manufacturing, IPCC (2010) summarises literature that indicates that solar PV has a very low lifecycle cost of pollution per kilowatt-hour (compared to other technologies). Furthermore they predict that upwards of 80% of the bulk material in solar panels will be recyclable; recycling of solar panels is already economically viable. However, certain steps in the production chain of solar PV systems involve the use of toxic materials, e.g. the production of poly-silicon, and therefore require diligence in following environmental and safety guidelines. Careful decommissioning and recycling of PV system is especially important for cadmium telluride based thin-film solar cells as non-encapsulated Cadmium telluride is toxic if ingested or if its dust is inhaled, or in general the material is handled improperly. In terms of land use, the area required by PV is less than that of traditional fossil fuel cycles and does not involve any disturbance of the ground, fuel transport, or water contamination (IPCC, 2010).

While the use of PV technology provides several environmental benefits compared to traditional technologies, care should be taken that the installation of the solar water pump does not increase the use of groundwater so that supplies are depleted. Especially in the case where the initial capital costs are covered by a grant or other financial arrangement, the water supplied is more economical to the users compared to the original situation. This might increase water use. One approach to reducing this possible problem is to maintain water price for the users on the original level, and invest the extra money into a community development fund. For example, a solar water pump project in Thailand used the community development fund to invest in solar lighting systems.

Climate top:
When solar water pumps replace either diesel generated electricity or grid based electricity, there are certain climate related benefits. A diesel generator emits CO2 during operation and grid based electricity is usually generated with either coal, oil or natural gas which also emits considerable quantities of CO2. In contrast. a solar based water pump system does not result in greenhouse gas emissions. Extensive use of solar water pumps would therefore lead to substantial greenhouse gas emission reductions.

Financial requirements and costs top:
Several aspects of a PV pump system are key in determining the system costs:

a) size of the system. The high initial capital costs of the PV array is the major barrier to high penetration rates of the use of solar water pumps (Firatogly & Yesilata, 2004). The PV array is the most expensive part of the system. The size and capacity of the PV array considerably influences the up-front costs of the system. Therefore, it is important to use the smallest system size possible that still meets all the criteria of that particular location. Government or aid agency subsidies which cover the high initial capital costs are required in many locations to realize PV water pump systems (Short and Oldach, 2003). The high reliability of solar water pumps might offset its higher initial costs compared to diesel powered pump systems (Barlow et al., 2003).

b) insolation levels. This is direclty related to the required size of the system. The intensity and number of hours of sunshine determine the capacity requirements and thus the PV array size requirements. The more sunshine, the smaller the system requirements.

c) pumping head. The pumping head is the distance over which the water needs to be moved. The costs of water volume unit are proportional to the pumping head. Odeh et al., outline that a shallow well of only 20 meters depth compared to a deep well of 100 meters depth reduces water volume unit cost by around five times (Odeh, Yohanis, & Norton, 2006).

While system size and insolation levels greatly influence the capital costs of a PV water pump the operational costs of the system are generally very low due to low labor and maintenance costs. In contrast, inexpensive diesel or gas generators have low initial capital costs but require constant maintenance and the parts have shorter lifetimes which increases operating costs. This long-term economic advantage makes solar water pumping more cost-effective to conventional pumping systems, such as diesel powered pumps (NYSERDA, 2004). For example, a study investigating the economics of solar water pumps shows that in seven countries (Argentina, Brazil, Indonesia, Jordan, the Philippines, Tunisia, and Zimbabwe) solar water pump systems had a cost advantage over diesel pumping systems in the power range up to 4 kWp (Posorski & Haars, 1994; Posorski, 1996). A study by the Bureau of Land Management at Battle Mountain, Nevada, USA, showed that certain PV systems cost only 64 % over twenty years compared to a comparable diesel generator system did over ten years (NYSERDA, 2004). Additionally, the PV system required only 14 % of the labor hours that the diesel generator system required. The study by Odeh et al. found that PV water pumping systems are more cost-effective than diesel pumping systems for equivalent hydralic energy below 5750 m4 /day and 21.6 MJ/m2 day average insolation. In turn, diesel pumping becomes more economical for larger applications (Odeh, Yohanis, & Norton, 2006). This difference in costs over a long term is clearly illustrated in Table 2.

PV systems are particularly useful in locations to which it is not practical to extend the grid. Even in locations where connection could be made to a grid, utilities have found it more viable to use PV pumps than to extend and maintain the electric grid (Kou et al., 1998).

Thank you to Climatetechwiki.org for much of this information.
SALE! Ask us about our current special. Save over $200 on select
solar pump systems.